Showing posts with label wildfires & fire suppression. Show all posts
Showing posts with label wildfires & fire suppression. Show all posts

3 Reasons to Invest in Portable Water Storage Tanks

How Water Storage Tanks Can Save Money, Time, and Lives


Having access to water is essential. 

Whether that water is for drinking, landscaping, or for extinguishing wildfires, having a portable water supply is important to do your job faster and easier. Investing in a portable water storage tank will provide access to water in situations when it is needed most.

Here are five reasons your business needs to invest in a portable water storage tank.


1. Transport water in emergency situations.


When emergencies arise that limit our access to water, having our own supply is imperative. When roads are flooded after a hurricane and clean water is a scarce commodity, having an on-hand, portable water storage tank could be a lifesaver.


These tanks are made from highly resistant polyethylene materials that range in capacity size from 210 to 465 gallons. If you need to transport drinking water, the interior of these tanks can be coated to meet FDA standards for safe drinking water.

There are also larger options for emergency water transport.The Argo water trailer is designed to access off-road farms and remote locations. One benefit of this trailer is its ability to quickly access and address bale, cotton, or grass fires.


2. Clean off dirty equipment.

Sometimes the most important thing for your business is to safely transport water around for various tasks. 


Equipment gets dirty and needs to be washed down after work is completed or employees need water in remote locations. Whatever the reason, a DOT compliant water tank trailer is a solution to your water transporting needs.

Our 500 gallon Argo water tank trailer is equipped to handle many of your water storage requirements. 

Made with high strength polyethylene, the tank is situated on a DOT compliant trailer and outfitted with hoses, pumps, and spray equipment. These tank trailers are resistant to rust and corrosion, and are ideal for remote areas.


3.  Fight fires in rural areas.

When a fire breaks out in a remote area, emergency services might not be able to make it to your location before the fire spreads to buildings, damages other property, or harms people and animals. Having a portable fire protection water storage tank allows you to transport water anywhere on your property and in other rural locations. A portable storage tank with high capacities provides greater resources to put out any fires that should occur.


Our fire suppression water trailers are equipped with a 25-foot hose and 2-inch pump with a Honda engine for fire prevention. The polyethylene tank is designed for off-road use to handle the most remote of locations. This tank trailer’s hose has the ability to target spray areas and also cover large amounts of ground with an adjustable spray bar. 

The tank’s black color is an added benefit. Because light is blocked from reaching the water, it reduces the likelihood of algae forming in the tank. You can also use this tank as a reserve


Choosing Your Portable Water Storage Tank

Whatever the water needs are for your business site, having a portable water storage tank will save you time, money, and worry in the long run. Whether this tank is 200 or 1,600 gallons, choosing the size and type of tank will depend on your business applications, needs, and goals.

Do you want to know what kind of portable water storage tank solution is right for you? 

To learn more about GEI Works, contact us at +1-772-646-0597 to receive one-on-one assistance with all your water storage needs.


Fighting Fires with Portable Water Tanks


Controlling a fire is of the utmost importance when firefighters first arrive on scene. Portable water tanks are an affordable and practical solution to making sure that water is readily available for fire fighting efforts.

Fighting Fires
Fire engines typically carry about 500 gallons of water in the truck to a fire.  This allows firefighters to start fighting the fire upon arrival.  Meanwhile, others can set up access to the local water supply. For most fires, firefighters will attach fire hoses to a nearby fire hydrant to draw from local water mains. Once the hoses are attached to the hydrant, water is pumped to the truck where it is pressurized to supply water for multiple fire hoses. In addition to allowing for quick attachment, modern fire hydrants access water underground and below the freeze line, ensuring the water doesn’t freeze in cold temperatures when needed.


Problems with Fire Hydrants
Unfortunately, fire hydrants aren’t always reliable as an emergency source of water.  For starters, fire hydrants accesses public water mains, the same source used by local residents for daily tasks, such as drinking, bathing, irrigation, and garden watering. With so many people drawing water from one source, the hydrant’s available water pressure can impacted. As a result, firefighters may have to find a hydrant much further away, wasting valuable time.


After arriving on the scene, there are several reasons why a fire hydrant may not produce water. It may not have been properly maintained, a water pipe may be broken, or a below-ground valve may be closed. The access to the hydrant may also be blocked by parked or first responder vehicles. Any of these situations will force the need to hook up to a different hydrant or an alternative water supply. 

Fire fighters may also find that there isn’t a fire hydrant located in the area. While many rural fire companies are equipped to haul a larger quantity of water to handle a fire, there are situations, such as wildfires, where urban fire companies are called in for support. When this occurs, the trucks may lack the necessary amount of water to extinguish or control the fire.

The Water Tender
As one solution, the fire engine may be accompanied by a water tender. Also known as a tanker, the water tender is a truck specifically designed to carry large amounts of water. With the ability to draw from a variety of sources, such as swimming pools, ponds, creeks, rivers, and lakes, these trucks can carry between 2,000 and 4,000 gallons of water.

The decision of when to deploy a water tender usually depends on the location of the fire. If the fire is located near a fire hydrant, a water tender may not be called unless the water supply begins to run low. For rural areas where a fire hydrant may not be available, the water tender may accompany the fire engine to the scene.


Portable Water Tanks
When a water tender is called into action, it will usually carry a portable water tank with it. These tanks have a capacity between 1,000 and 2,500 gallons. When the water tender discharges water into a portable tank, it can do so at a rate of about 1,000 gallons per minute, allowing for a quick switch from hydrant to tank or to quickly begin the fight if a hydrant is not available. Once the portable tank is filled with water, the process is similar to using a fire hydrant. The water is drawn into the fire engine where it is pressurized and sent through the fire hoses to extinguish the flames.

There are two types of portable tanks that are typically used for additional water availability.
  1. The most common type of portable tank for fire fighting usage is a frame tank, which is flexible and supported by an aluminum frame. All of these tanks are both easy and quick to set up, since time is critical in fire fighting.
  2. A self-supporting tank, such as an onion tank , has the ability to support the water inside the tank itself. A high-sided foldout tank is a bucket built specifically to be transported by a helicopter, often used for wildfires. 
With these tanks on hand, firefighters are assured they have enough water to put out the fire, saving property and lives.



GEI Works manufactures a wide selection of standard and custom portable water tanks. Known for quality and durability, we supply water tanks throughout the nation, and worldwide.  

For more information:

+1-772-646-0597
info@geiworks.com 

Wildfire Part Three...

The Impacts to Water from Wildfire


Wildfires cause devastating heat, fire, and burning destruction. After the wildfire’s ash settles and the rain pours, mudslides quickly erode the burned land, carrying a swath of debris and muddy sludge downhill. As runoff pours downhill, it enters into waterways such as streams and lakes, degrading the water quality. This impact to water is the focus of part three in our wildfire series.

We will discuss where our water supply comes from, how wildfire affects it, what contaminates it, and water pollution solutions for preventing and treating it. We will demonstrate how the Thomas Fire in southern California has affected the water supply in the county of Ventura, and how they are responding. Part one, which focuses on water storage preparation, is here. Part Two, which focuses on erosion control, is here.

The Importance of Clean Water
Clear and clean water is one of the most basic of human necessities. We need it to drink and replenish our bodies. We need it to irrigate crops to grow food. Aquatic life needs it to breathe, and to swim freely and see clearly. Clean water matters and enables us to function and flourish.


Where Does Our Water Supply Come From?
The majority of our water sources originate from forested land. Since forests provide so much of our water supply, it’s important to protect the forests’ watersheds .

According to the U.S. Geological Survey:

  • 50% of southwestern U.S. water supply comes from forests
  • 80% of freshwater in the U.S. begins in forest lands
  • 3,400 public drinking water systems are in national forest watersheds
Over 70 million acres have burned in the U.S. in the past 10 years, according to the U.S. Forest Service. Unhealthy forests can negatively affect our water quality, so there is reason to have concern, particularly after big wildfires. Generally, the water quality is better coming from a forest area than elsewhere, but after a mega wildfire, such as the Thomas Fire, that natural water supply can be severely affected and contaminated.

Contaminants in Runoff from Wildfire



Contaminants from post-wildfire runoff harm aquatic life in ecosystems, killing fish and plants. They also compromise water quality in water district municipalities, causing boil water alerts and a diversion of water sources which leads to unsafe low water pressure. The severity of the wildfire determines the degree to which the water quality degrades. It is based on several factors: post-wildfire precipitation, watershed topography and ecology of the local region.

Some of the common contaminants found in water runoff are elevated heavy metals (including iron, lead, nickel, and zinc), phosphorous and nitrates, pesticides, remnants from flame retardant, and chemicals. Ash and debris can also contaminate water bodies. The debris accumulates and travels in stormwater runoff to new locations. It can also be blown by the wind into water sources. The communities surrounding the Thomas Fire burn area understand this contamination all too well.

The Thomas Wildfire’s Effect on Water Quality



On January 9th, torrential rains fell in Ventura County, close to the southern California Thomas Fire burn area. The recent fires burned at such high temperatures through the upper watershed that it left behind a significant amount of ash and debris. The muddy runoff gathered debris as it rolled downhill and into the water ways. It overwhelmed the Matilija Dam, which flows into the main tributary of the Ventura River. This caused the Casitas Municipal Water District to stop pumping water from the river to prevent potential water quality impacts to their Lake Casitas reservoir.

While this prevented contamination, it also decreased the available water supply. The water pressure and supply had already been lower from power outages and from firefighters drawing water to fight the Thomas wildfire. This pollution only made the problem worse.

The Matilija Dam Webcam on January 9th.
             Severe turbidity entering the water supply.              

A normal day for the Matilija Dam

The Casitas Municipal Water District has plans to use water pollution prevention products to help. The products will clean up and filter the ash and debris, allowing the water district to begin pumping again from formerly polluted waterways, such as the Ventura River. According to Ron Merckling, a spokesperson for the water district, turbidity curtains will block sediment from flowing downriver and drop it to the surface. They are being placed on Santa Ana and Coyote Creeks and near an intake structure for Castaic Dam. Booms that are up to 20 feet wide will skim the surface and will block floating material such as wood and brush. 

Ventura County is just one of the many communities facing these challenges. Neighboring communities such as Montecito have also had water breaks, power outages, and disruptions to their water supply. Fixes for these water quality issues can take weeks or even months. Fortunately, there are many options for minimizing the effects to water quality.

Solutions for Improving or Maintaining Water Quality after a Wildfire 
There are several solutions to minimize your contribution to contaminated stormwater runoff. These products can be used either before or after a rain event. 

Erosion Control to Minimize Impact to Water Quality


The first solution is to prevent the sediment, debris and contaminants from entering the waterways. Soil erosion control products slow and filter the spread of the runoff before it enters water bodies.
  • Straw Wattles can help prevent toxic urban runoff from entering water streams. They are placed perpendicular to the flow of the water. 
  • Straw or coir mats replace the hardened, burned earth with an absorbent ground cover. 
  • Silt fences collect sediment and slow the speed of water.
Protecting Stormwater Drains and Other BMPs


Another solution is to use stormwater best management practices (BMPs), such as drain guards and ditch checks. These filter or stop the flow of water. If the stormwater drains are not maintained, it can lead to costly cleanup. Avoid expensive fixes by maintaining the drains.

Water Pollution Prevention: Turbidity Curtains and Debris Booms


Another effective preventative solution for water-side property owners, associations and municipalities is the use of turbidity barriers. Turbidity curtains and booms are used as a last resort, once the turbidity and sediment has already entered the waterways. They float in the water, containing and slowing the settle of the sediment as it passes through the water.

We have many variations of turbidity curtains and booms depending on needs and situation.
  • Turbidity Curtains slow the spread of sediment so it has time to settle to the bottom. Several types are available depending on water conditions.
  • Debris Booms collect floating branches and trash debris.
  • Staked Silt Barriers can be placed in shallow water (30” deep or less) to collect sediment and redirect the flow of water.

An Investment for the Future
The government is also finding ways to help. The U.S. Department of Agriculture (USDA) announced recently on January 17th that it’s investing almost $32 million this year to mitigate wildfire risk, improve water quality, and restore healthy forest ecosystems. It will include supporting important watersheds, and reconnecting ecosystems that are vital reservoirs of biodiversity. The U.S. Forest Service is an agency of the USDA.

The Future of Wildfire


Wildfires are a complicated and dangerous phenomenon. They can swiftly burn thousands of acres leaving behind charred earth and destroying communities, properties and lives. They can lead to massive mudslides and flooding, steep erosion of hillsides, and polluted runoff. They can affect the water supply and contaminate public and private water sources. 

Understanding the process of wildfires can help us in the future. Using preventative measures before, during, and after the wildfire can help control and mitigate its effects. Working together as a community, we can become more knowledgeable and better prepared for the future of wildfire.

If you have questions about any of the wildfire solutions we discussed, please contact us at 772-646-0597 or visit us at GEI Works.

Wildfires: Part Two...

What Happens After the Wildfire

In Part One of the wildfire series, we discussed the current and ongoing situation with wildfires—how the “new normal” is affecting the way fire-risk areas prepare for future wildfires. One important part of that preparation is water storage products, which includes water trailers, pillow tanks, frame tanks, onion tanks, and rainwater corrugated tanks. A link to Part One can be found here.

In Part Two, we will discuss the recent catastrophic mudslides in southern California, what caused these mudslides, and what can be done to minimize them in the future. We will also talk about erosion control products and the role they play in both prevention and revitalization in wildfire-damaged regions.


When the Rain Falls and the Land Slides

On the early morning of January 9th, just over a month after the Thomas Wildfire in southern California first raged burning a record-breaking 281,000 acres, a pounding rain began in Santa Barbara and Ventura Counties. The storm poured rain with such intensity that it dropped almost an inch of rain in 15 minutes—4 times the amount of rain needed to trigger debris flow. The rain in the area very rarely falls this fast and this heavy. Within 24 hours, a devastating 5 inches of rain would accumulate in the region.


Rain would be a blessing during a fire or in the middle of a drought. But right after a wildfire has just destroyed an area’s forests and vegetation, rain is a disaster.  Hardened earth in a fire-ravaged area does not absorb water the way it normally would. So instead when the rain fell, it slid effortlessly down the mountains , hills and slopes like a theme-park water slide. On its way down, it took with it fallen and burned debris, sludgy sediment, loosened rocks, continuing and building velocity until reaching the southern California cities of Montecito and Carpinteria. 


Once there, it pummeled the small communities with mud and debris, surprising the residents with its sudden force and destruction. “It looked like a World War I battlefield,” said Bill Brown, the Santa Barbara County sheriff. “It was literally a carpet of mud and debris everywhere with huge boulders, rocks, downed trees, power lines, wrecked cars—lots of obstacles and challenges for rescue personnel to get to homes, let alone get people out of them.”


By the time the mudslides were over 20 people had died, hundreds more rescued and over 100 homes were destroyed. 

While the mudslides are over for now, unfortunately, the flooding risk in the fire-ravaged Thomas Fire area is just beginning. According to FEMA, flooding can be a problem for up to five years following a wildfire, until natural vegetation has time to take root again and regrow.

What Can You Do?

So what can be done in the meantime to prevent further mudslides if you are in a flood-risk region near a fire-devastated area?

Control of the soil is a crucial first step in prevention of mudslides after a wildfire.

To determine this on a broader scale, a U.S. Forest Service Burned Area Emergency Response (BAER) assessment team evaluates the watershed conditions in forests burned by wildfire. Because time is precious, the assessments often begin even before the wildfire is completely contained. The BAER team produces a post-fire report describing immediate emergency measures to reduce flooding risks and debris flow threats arising from the wildfire’s destruction. 

Steps Toward a Safer Future

The mudslides that affected southern California were tragic and a perfect storm of events—combining the largest wildfire in California’s history with unusually heavy rains. Erosion Control products can mitigate potential flooding in the future, saving the forest and the communities below.

Join us for the third and final installment on our wildfire series. In the next post we will discuss how wildfires negatively affect water quality in communities and how it can be treated and prevented. We will demonstrate several methods of filtration and proper best management practices.






Wildfires: The Current Burn and the Future of Fire



This is the first part in a series on modern wildfires.

We will cover the staggering and destructive wildfires in California that last year burned 1.3 million acres and close to 10,000 structures, most recently the Thomas Fire, which is the largest wildfire in California history.

We will also discuss the future of wildfires—how they have been rapidly expanding in size over the past decade from many combined factors, including droughts, changing climate,  population increases, and limited federal and state resources.

Lastly, we will describe several water storage product solutions you can use to prepare for the era of megafires in what is increasingly being called, “the new normal.”

The Current Situation

California recently experienced its biggest wildfire in history, the Thomas fire, which spread to more than 280,000 acres in southern California, burning thousands of trees and over 1,060 structures. Igniting on December 4th, 2017, the strong Santa Ana winds caused it to rapidly spread.  It has taken over a month just to contain the fire. Earlier this year, in October, northern California experienced its costliest and most destructive wildfires in history, adding up to over $9.4 billion in insured losses.  And this fire season will not be an isolated incident according to experts and California lawmakers.

California’s Governor, Jerry Brown said that fire activity will likely happen on a regular basis for decades now. “This is kind of the new normal,” he said. “With climate change, some scientists are saying that southern California is literally burning up. We’re facing a new reality in this state where fires threaten people’s lives, their property, their neighborhoods, and of course billions and billions of dollars. We have to have the resources to combat the fires and we have to also invest in managing vegetation and forests…in a place that’s getting hotter.”

Therefore, the future of wildfire control has no clear solution in sight, other than to prevent where possible and prepare where unavoidable. In recent years, a perfect storm of these factors has led to much bigger mega wildfires that cover greater acreage (many over 100,000 acres), affecting more people and at greater cost and cleanup. And the U.S. Forest Service has limited resources to prevent it.


So, what exactly has caused the rise in these megafires?

  • Outdated firefighting policies regarding fire suppression
  • Increasing population in fire-prone areas
  • Climate change, which is raising temperatures and creating unpredictable weather patterns (hotter weather and drier topography in California)
  • The increase in the number of mega wildfires has depleted the U.S. Forest Service's budget and resources for fire prevention measures. It is estimated that over 52 percent of its current budget is spent on fire suppression, up from just 16 percent of its budget a decade ago. That means it's using more of its budget to fight fires, rather than prevent them or minimize them.

Firefighters use the Wildfire Behavior Triangle to estimate the potential severity of fires—they evaluate fuels, weather and topography. For example, during extended periods of drought, nature produces increased amounts of dried foliage and deadwood that act as tinder for potential fires.  Weather predictions such as seasonal rain patterns are considered.  The last part of the equation is a rating of the area’s topography, such as water sources, wind patterns, manmade structures, and natural physical barriers.

Wildfires are not isolated to California. Wildfires also affect many other western states especially during the fall, including Oregon, Washington, Idaho, Wyoming, Montana, Wyoming, Utah, and Colorado. It also affects Florida in the spring.

According to the U.S. Forest Service, the number of fires each year in the U.S. has not necessarily increased, it’s the number of total acres burned during each fire as well as rising costs. The statistics back this up. Before 1999, only 1 year had seen over 6 million acres burned. Since 2000, in 10 out of the last 17 years over 6 million acres have burned, including 2015 in which over 10 million acres burned. Before 2000, the average firefighting costs per year were less than $500 million. Since 2000, the average yearly costs over the past 17 years is over $1 billion, and 2017 exceeded over $2.4 billion, the highest on record.

Before the Next Fire, Be Firewise and Prepare with Water Storage

Preparation can make a difference. With wildfires being the “new normal” and the U.S. Forest Service resources stretched past capacity, homeowners, businesses, farmers and local government are taking their own measures. They are learning to prepare for wildfires, the way some states prepare for a hurricane.

Since firefighting resources are limited during a wildfire, providing your own source of water could help to save your property. “Above ground water tanks and water sources that are accessible by emergency vehicles can help provide firefighters with water. Make sure signs or other markings indicate any water sources firefighters can use,” said Nick Williams, a fire resource forester and fuels mitigation program manager with the Wyoming State Forestry Division.


We offer several water storage product options you can use to prepare your home, business, neighborhood, or city. Pillow tanks can store water for long periods of time to provide fast access to large volumes of water in emergency situations. Frame tanks and onion tanks lie flat for storage and can be quickly set up in emergencies, so are often used by firefighting agencies where fire hydrants are not available or functioning. Our DOT Approved Water Trailers store large amounts of water and can be hitched to a truck for transporting where needed. The attached spray bar and fire-hose provides a way to douse down a wide area.
 
Preparation is especially important for rural areas, which do not have the nearby fire trucks and more abundant fire hydrants that urban areas have. Scott Jamar, a rural resident of the Santa Cruz Mountains, has a 5,000 gallon water tank, 150-foot fire hose, and propane powered pump for his property. His goal is to use the tank to water down his home, deck and yard during an approaching wildfire. “I don’t take it for granted that firefighters will quickly get here,” he said, “I take it for granted that they’re not going to be here. We can’t rely on infrastructure, so let’s try to be a little more self-sufficient and do what we can.” Once firefighters are able to reach his property, any remaining water can be used by the firefighters to douse the flames. 

This is just one example of taking preventative action as wildfires become an increasing threat. Preparing with water storage products can make a difference, one that can help you as well as aid firefighters.

Please join us for the next post in the series. We will go over what happens after a wildfire has ended-- leaving behind charred, hardened earth—and how this affects soil erosion, water quality and flooding. We will explain several erosion control procedures and products that can help you successfully mitigate the ongoing aftereffects of wildfires.

Water Storage Products


Mars Collapsible Water Pillow Tanks

Mars Pillow Tanks and Rainwater Tanks are great for long term water storage. Since they are enclosed, they can store water large amounts of water in an outdoor environment.  Also if they need to be transported empty, they are lightweight and can fold flat.



Centaur Frame Tanks 
Hydrostar Onion Tanks 

The Centaur Frame Tank and Hydrostar Onion Tank can be stored flat, are easily transportable, and can be quickly set up and filled. They are often used by firefighters in remote areas.



Water Trailers

Argo Water Fire Fighting Trailers can store 500-1600 gallons of water. It is transportable and built with hoses, nozzles, valves and a spray bar for spraying down large areas. 




RESOURCES:

Ongoing list of current active wildfires in the United States:

Annual Federal Firefighting Suppression Costs (1985-2016): https://www.nifc.gov/fireInfo/fireInfo_documents/SuppCosts.pdf

The Rising Cost of Wildfire Operations: Effects on the U.S. Forest Service’s Non-Fire Work

Emergency Preparation for Potential Wildfire

Capturing Rainwater in CA—California Rainwater Capture Act of 2012

Rural Resident Preparing for Wildfires

Wildfire Mitigation: Prevention, Preparedness, and Facts

In the line of fire? Read on to learn more about wildfire prevention, preparedness, and post-fire mitigation!

Pre-Fire
Prevention

Wildfires are a growing problem within the United States. Fortunately, there are preventative measures that forestry services and fire departments take to decrease or even prevent forest fires in the long term:
·       Prescribed burns – Controlled or prescribed burns are implemented to decrease understory litter (collection of dead or decaying vegetation) and can drastically decrease the fuel supply for wildfires in a safe manner. Removal of this litter can prevent high-intensity wildfires in the long-term.
·       Mechanical thinning – Like prescribed burns, mechanical thinning is a process that removes litter from the forest floor. Mechanical thinning is accomplished using bulldozers and other heavy equipment to remove potential fuel from the surface in fire-prone regions.
·       Dozer lines – Dozer lines are fire lines that are cut through a forest to create a break in the vegetation and to turn up non-flammable mineral soil. In the event of a forest fire, there will be little material for the fire to consume, and this will slow down or stop the spread of the wildfire. 

For more information on the benefits of prescribed burning and mechanical thinning, as well as how it interacts with forest ecology, check out this U.S. Department of Agriculture article.

Preparedness

In the event of a forest fire, it is necessary for firefighters to have the right tools on hand to combat the flames. One of those is a backup firefighting water supply. Here are some common portable water tanks that see use during wildfire fighting:

·       Onion Tank – Onion Tanks are self-rising water storage tanks that can fold up for ease of storage. These can be a quick and simple firefighting solution in the field, and they require very little investment of storage space or set-up time.
·       Frame Tank – These open top tank types typically have a lightweight metal frame that will fold open and contain an interior liner for water storage. Frame tanks can then manifold together to create a chain of water reservoirs for firefighting and emergency response situations.
·       Water Trailer – Water trailers are a fully-mobile bulk water containment option and are towable to most locations. Mobile storage solutions can be used to refill other portable tanks or to fight fires independently through the use of spray bar and fire hose attachments.
·       Dip Bucket – For aerial firefighting, dip tanks are collapsible buckets slung underneath a helicopter. These can be refilled by water reservoirs or portable water tanks such as onion tanks or frame tanks in the field to suppress wildfires.

Forest fires
Facts

Did you know that the United States averages 100,000 wildfires each year? These fires clear approximately four to five million acres of land and move at a speed of 14 miles an hour. States in the western portion of the United States, such as California, Colorado, Idaho, Montana, Texas, Washington, and Wyoming see the worst effects of these fires. However, Florida, where GEI Works is headquartered, experiences 3,300 wildfires annually.

Wildfires are caused by natural events, such as lava or lighting, but nearly all fires in the US are caused by humans from unattended campfires, debris burning, discarded cigarettes, parking vehicles on dry grass during drought or arson.

According to Timothy Ingalsbee, co-director of the Association for Fire Ecology in the US, “Livestock grazing, commercial logging, and systematic fire suppression has converted some frequent, low-severity fire regimes, such as the ponderosa pines in the interior west, into infrequent, high-severity fire regimes.” As a result, present day fire seasons last much longer than they did several decades ago, in 2013 it was found that fire seasons lasted 18% longer than they did in 1979. 

Furthermore, US Federal Wildfire Suppression and Protection costs have tripled since the 1990s, which accounts for half of the Forest Service’s annual budget. 

High-intensity fires can lead to top soils becoming hydrophobic and can decrease or prevent water absorption leading to an increase in flooding, intensified erosion, and as a result, faster transport of nitrates from ash.  This will change the hydrology of a region and can have negative long-term effects on the environment.


Post-Fire
Erosion Control

Erosion concerns following wildfires can persist for days or weeks after a fire to the following years as the hydrology of the region changes. 

Rainfall following a wildfire can carry black ash rich in phosphates, nitrates, and ammonia from the burned forest into streams and rivers which can clog the respiratory systems of aquatic life, lead to algal blooms, and pollute drinking water reservoirs. Additional implications are the transport of debris, such as downed trees, tree limbs, and brush into waterways. 

Forestry services can combat these environmental concerns through proactive erosion control methods, such as using coir logs, coir mats, silt fences, ditch checks, boom, and turbidity curtains to slow and stop the erosion of soil and post-fire debris flow.

To learn more about wildfire erosion control and pollution prevention, visit GEI Work’s Forestry page.